MOC: [[INTELLIGENCE ARTIFICIELLE]]
Date : 2025-02-02
Auteur: [[Aurélien Géron]]
Tags: #livre
Note :
***
## Machine Learning
![[Machine Learning]]
## Data Mining
![[Data Mining]]
## Supervised Learning
![[Supervised Learning]]
## Classification
![[Classification]]
## Régression
![[Régression]]
## Feature
![[Feature]]
## Unsupervised Learning
![[Unsupervised Learning]]
## Clustering Algorithm
![[Clustering Algorithm]]
## Visualization Algorithm
![[Visualization Algorithm]]
## Dimensionality Reduction
![[Dimensionality Reduction]]
## Feature Extraction
![[Feature Extraction]]
## Anomaly Detection
![[Anomaly Detection]]
## Association Rule Learning
![[Association Rule Learning]]
## Semi-Supervised Learning
![[Semi-Supervised Learning]]
## Self-Supervised Learning
![[Self-Supervised Learning]]
## Reinforcement Learning
![[Reinforcement Learning]]
## Batch Learning
![[Batch Learning]]
## Data Drift
![[Data Drift]]
## Online Learning
![[Online Learning]]
## Learning Rate
![[Learning Rate]]
## Generalization
![[Generalization]]
## Instance-Based Learning
![[Instance-Based Learning]]
## Model-Based Learning
![[Model-Based Learning]]
## Sampling Bias
![[Sampling Bias]]
## Feature Engineering
![[Feature Engineering]]
## Overfitting
![[Overfitting]]
## Hyperparameter
![[Hyperparameter]]
## Underfitting
![[Underfitting]]
## Tester et valider un modèle
![[Tester et valider un modèle]]
## Pipeline
Une pipelane dans le monde de la data est une séquence de composants qui analysent de la donnée à la suite les uns des autres. Cela nécessite du monitoring, c'est très similaire à un workflow d'automatisation.